Dynamical group approach to the exponential cosine screened Coulomb potential

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1986 J. Phys. A: Math. Gen. 19 L231
(http://iopscience.iop.org/0305-4470/19/5/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 19:28

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Dynamical group approach to the exponential cosine screened Coulomb potential

H de Meyer†, V Fack and G Vanden Berghe
Seminarie voor Wiskundige Natuurkunde, Rijksuniversiteit Gent, Krijgslaan 281-S9, B9000 Gent, Belgium

Received 18 November 1985

Abstract

The bound state energies of the screened Coulomb potential $-\exp (-\lambda r) \cos (\mu r) / r$ can be approximated on account of a scaling variational principle and in such a way that no expansion in the screening parameters is required.

The exponential cosine screened Coulomb (ECSC) potential $V(r)=$ $-\exp (-\lambda r) \cos (\lambda r) / r$, frequently encountered in solid state physics, has received much attention in recent years. The bound state energies of the ECSC potential have been studied using a variety of approximate methods, both numerical (Bonch-Bruevich and Glasko 1959, Singh and Varshni 1983) and analytical (Lam and Varshni 1972, Lai 1982, Dutt et al 1985). A non-perturbative dynamical group approach to screened Coulomb potentials has been formulated by Gerry and Laub (1984), whereas its application to the ECSC potential has been treated very recently by Roy and Choudhury (1985). More precisely, these authors have introduced two kinds of approximations. The first consists in a truncation of the series development of the potential in powers of λ; the second is inherent in the scaling variational method and consists in neglecting off-diagonal matrix elements of the transformed Hamiltonian. In the present letter we want to insist upon the fact that the former kind of approximation can be easily avoided. Moreover, we consider the extended ecsc potential

$$
\begin{equation*}
V(r)=-r^{-1} \mathrm{e}^{-\lambda r} \cos (\mu r) \quad(\lambda, \mu>0) \tag{1}
\end{equation*}
$$

to which we associate the energy functional $\Omega(E)$, defined by

$$
\begin{equation*}
\Omega(E)=r(\hat{H}-E)=r\left(\frac{1}{2} p^{2}+V(r)-E\right) . \tag{2}
\end{equation*}
$$

The $\operatorname{SO}(2,1)$ Lie algebra is realised as follows (Bednar 1973):

$$
\begin{align*}
& K_{1}=\frac{1}{2}\left(r p^{2}-r\right) \\
& K_{2}=r \cdot p-\mathrm{i} \tag{3}\\
& K_{3}=\frac{1}{2}\left(r p^{2}+r\right) .
\end{align*}
$$

[^0]Introducing the operators $K_{ \pm}=K_{1} \pm \mathrm{i} K_{2}$, the Hermitian representation is defined by

$$
\begin{align*}
& K_{3}|l m n\rangle=n|l m n\rangle \\
& K_{ \pm}|l m n\rangle=[(l+1 \pm n)(\pm n-l)]^{1 / 2}|l m n \pm 1\rangle \tag{4}\\
& \left(K_{3}^{2}-K_{1}^{2}-K_{2}^{2}\right)|l m n\rangle=l(l+1)|l m n\rangle
\end{align*}
$$

where $n=n_{r}+l+1, n_{r}$ is the radial quantum number and l is the orbital angular momentum.

We now re-express the functional $\Omega(E)$ in terms of the generators K_{1} and K_{3} whereupon we carry out a tilting transformation $\Omega(E) \rightarrow \bar{\Omega}(E, \theta)=$ $\exp \left(-\mathrm{i} \theta K_{2}\right) \Omega(E) \exp \left(\mathrm{i} \theta K_{2}\right)$. On account of the property

$$
\begin{equation*}
\mathrm{e}^{-\mathrm{i} \theta K_{2}}\left(K_{3} \pm K_{1}\right) \mathrm{e}^{\mathrm{i} \theta K_{2}}=\mathrm{e}^{ \pm \theta}\left(K_{3} \pm K_{1}\right) \tag{5}
\end{equation*}
$$

we obtain
$\bar{\Omega}(E, \theta)=\frac{1}{2} \mathrm{e}^{\theta}\left(K_{3}+K_{1}\right)-E \mathrm{e}^{-\theta}\left(K_{3}-K_{1}\right)-\operatorname{Re}\left\{\exp \left[-(\lambda+\mathrm{i} \mu) \mathrm{e}^{-\theta}\left(K_{3}-K_{1}\right)\right]\right\}$.
The scaling variational method consists in setting the diagonal element ($l m n|\Omega(E, \theta)| l m n\rangle$ equal to zero and solving the resulting equation with respect to E which now becomes a function $E(\theta)$ of the tilting parameter θ. The minimum attained by this function provides us with an approximation of the energy level $E_{n, 1}$.

The matrix elements of the functional $\bar{\Omega}(E, \theta)$ can all be calculated in analytical closed form. Indeed, the matrix elements of the first two terms in the expression (6) follow immediately from the application of the properties (4), whereas the matrix elements of the remaining term can each be expressed in terms of a Bargmann function (Bargmann 1947). One has

$$
\begin{aligned}
\left\langle l m n^{\prime}\right| \exp [& \left.-(\lambda+\mathrm{i} \mu) \mathrm{e}^{-\theta}\left(K_{3}-K_{1}\right)\right]|l m n\rangle \\
& =\langle l m n| \exp \left[-(\lambda+\mathrm{i} \mu) \mathrm{e}^{-\theta}\left(K_{3}-K_{1}\right)\right]\left|l m n^{\prime}\right\rangle
\end{aligned}
$$

and
$\left\langle l m n^{\prime}\right| \exp \left[-(\lambda+\mathrm{i} \mu) \mathrm{e}^{-\theta}\left(K_{3}-K_{1}\right)\right]|l m n\rangle$

$$
\begin{align*}
= & \frac{1}{\Gamma\left(1+n^{\prime}-n\right)}\left(\frac{\Gamma\left(n^{\prime}-l\right) \Gamma\left(n^{\prime}+l+1\right)}{\Gamma(n-l) \Gamma(n+l+1)}\right)^{1 / 2}\left(1+\frac{\lambda+\mathrm{i} \mu}{2} \mathrm{e}^{-\theta}\right)^{-n^{\prime}-n} \\
& \times\left(\frac{\lambda+\mathrm{i} \mu}{2} \mathrm{e}^{-\theta}\right)^{n^{\prime}-n}{ }_{2} F_{1}\left(l+1-n,-n-l ; 1+n^{\prime}-n ; \frac{1}{4}(\lambda+\mathrm{i} \mu)^{2} \mathrm{e}^{-2 \theta}\right) \\
& \left(n^{\prime} \geqslant n\right) \tag{7}
\end{align*}
$$

all other matrix elements being zero.
Hence, it is straightforward to obtain an approximation to the energy levels $E_{n, l}$ by minimising the energy function

$$
\begin{equation*}
E_{n, l}(\theta)=\frac{1}{2} \mathrm{e}^{2 \theta}-\frac{\mathrm{e}^{\theta}}{n} \operatorname{Re}\left[\left(1+\frac{\lambda+\mathrm{i} \mu}{2} \mathrm{e}^{-\theta}\right)^{-2 n}{ }_{2} F_{1}\left(l+1-n,-l-n, 1 ; \frac{1}{4}(\lambda+\mathrm{i} \mu)^{2} \mathrm{e}^{-2 \theta}\right)\right] \tag{8}
\end{equation*}
$$

with respect to θ. In table 1 we list the results obtained by minimising $E_{n, I}(\theta)$ for $1 \leqslant n \leqslant 4, l=0,1, \ldots, n-1$ and for the ECSC potential whereby $\mu=\lambda$ assumes certain typical values. Although we present only eight significant figures, the calculations have nevertheless been carried out in double precision by means of a FORTRAN 77 program.

Table 1. Energy eigenvalues in atomic units for different values of the screening parameter λ of the ECSC potential, obtained from a five-band matrix (F) and a nine-band matrix (N). Under (D) are listed the corresponding eigenvalues obtained by the scaling variational method, whereas under (O) are given the values of $\exp (-\theta)$, where θ is the tilting parameter.

(n, l)		$\lambda=\mu$			
		0.01	0.02	0.03	0.04
10	D	-0.490 0010	-0.480 0078	-0.470 0260	-0.4600609
	F	-0.490 0010	-0.4800078	-0.470 0260	-0.4600609
	N	-0.4900010	-0.4800078	-0.470 0260	-0.460 0609
	0	1.0000623	1.0001360	1.0001969	1.0002660
20	D	-0.1150135	-0.105 1036	-0.095 3366	-0.0857690
	F	-0.1150135	-0.105 1036	-0.095 3366	-0.085 7690
	N	-0.115 0135	-0.105 1035	-0.095 3366	-0.085 7690
	0	2.0003912	2.0016340	2.0048297	2.0113276
21	D	-0.1150097	-0.105 0746	-0.095 2434	-0.085 5583
	F	-0.1150097	-0.105 0746	-0.095 2436	-0.085 5591
	N	-0.1150097	-0.105 0746	-0.095 2436	-0.085 5591
	0	2.0002674	2.0011639	2.0041965	2.0080199
30	D	-0.045 6191	-0.036 0256	-0.027 0334	-0.0188478
	F	-0.045 6191	-0.036 0251	-0.027 0283	-0.0188226
	N	-0.0456191	-0.036 0251	-0.0270283	-0.0188228
	0	3.0029758	3.0234643	3.0744943	3.1706808
31	D	-0.045 6110	-0.035 9677	-0.0268553	-0.018 4580
	F	-0.045 6110	-0.0359676	-0.0268544	-0.0184530
	N	-0.045 6110	-0.0359676	-0.0268545	-0.018 4532
	O	3.0026059	3.0206535	3.0656588	3.1500355
32	D	-0.045 5948	-0.035 8503	-0.026 4933	-0.0176648
	F	-0.045 5948	-0.035 8507	-0.026 4969	-0.0176819
	N	-0.045 5948	-0.035 8507	-0.026 4970	-0.0176821
	0	3.0018480	3.0150901	3.2119346	3.2119346
40	D	-0.021 4377	-0.012 5811	-0.005 3597	
	F	-0.021 4375	-0.012 5716	-0.005 2692	
	N	-0.021 4375	-0.012 5717	-0.005 2701	
	0	4.0223166	4.1606630	4.5761110	
41	D	-0.021 4245	-0.012 4915	-0.005 0887	
	F	-0.0214244	-0.0124856	-0.005 0321	
	N	-0.021 4244	-0.012 4857	-0.005 0327	
	0	4.0200457	4.1502941	4.5307707	
42	D	-0.021 3980	-0.0123105	-0.004 5424	
	F	-0.0213980	-0.0123102	-0.004 5390	
	N	-0.0213980	-0.0123102	-0.004 5393	
	0	4.0177774	4.1283230	4.4439450	
43	D	-0.021 3578	-0.012 0347	-0.003 7143	
	F	-0.0213578	-0.012 0382	-0.003 7480	
	N	-0.0213578	-0.012 0382	-0.003 7481	
	0	4.0122692	4.0957429	4.3239350	

Table 1. (continued).

(n, l)	$\lambda=\mu$			
	0.06	0.08	0.01	0.2
10 D	-0.440 2004	-0.420 4636	-0.400 8839	-0.3062964
F	-0.4402005	-0.420 4639	-0.400 8447	-0.306 3338
N	-0.440 2005	-0.420 4639	-0.400 8448	-0.306 3340
0	1.0003111	1.0008965	1.0017150	1.0113295
20 D	-0.0674217	-0.050 3922	-0.0349677	
F	-0.0674209	-0.050 3858	-0.0349401	
N	-0.0674210	-0.050 3862	-0.0349410	
0	2.0362238	2.0809071	2.1553547	
21 D	-0.066 7697	-0.0489610	-0.032 3498	
F	-0.0667774	-0.048 9968	-0.032 4682	
N	-0.0667774	-0.0489970	-0.0324687	
0	2.0265355	2.0588019	2.1122840	
30 D	-0.005 7194			
F	-0.005 4575			
N	-0.005 4615			
0	3.6794460			
31 D	-0.004 5278			
F	-0.004 4743			
N	-0.004 4748			
O	3.5702375			
32 D	-0.002 1307			
F	-0.0023151			
N	-0.0023137			
O	3.3883419			

Our results closely resemble those of Roy and Choudhury (1985), especially when λ is very small. In fact, one can verify that on expanding the rhs of (8) in powers of $\lambda=\mu$ one recovers as the first terms the truncated series development mentioned in their paper.

Finally, it should be remarked that, since the off-diagonal matrix elements of $\bar{\Omega}(E, \theta)$ can also be expressed in closed form, we could treat them as perturbation terms and perform an algebraic perturbation expansion. Then the tilting parameter θ can be utilised to increase as much as possible the rate of convergence of that expansion. Such an iterative perturbational scheme has been established already by us (Fack et al 1985) for the $\lambda x^{2} /\left(1+g x^{2}\right)$ potential. We hope to report soon on a similar treatment for the ECSC potential.

References

Gerry C and Laub J 1984 Phys. Rev. A 301229
Lai C S 1982 Phys. Rev. A 262245
Lam C S and Varshni Y P 1972 Phys. Rev. A 61391
Roy B and Choudbury R R 1985 Z. Naturf. 409 453
Singh D and Varshni Y P 1983 Phys. Rev. A 282606

[^0]: \dagger Senior Research Associate at the National Scientific Research Fund (Belgium).

